Start by selecting the model year of your coach from the left frame. Note that only 1997 model year and newer are available online.

The wiring information is divided into 110 volt, 12 volt, and function. We have both diagrams that show the logic and installation drawings that illustrate routing of wires and the location of electrical components.

The Electrical Parts Identification List provides the terminals, connectors, conductors, receptacles, lamps, legends, and other reference items needed to read our wiring installation drawings.

The Wiring Identification Guide provides the codes printed on each wire. Using this code, you can determine purpose and location of the wire.

Acrobat Reader is used to display the Wiring Information. Helpful functions are noted below. For additional information, see the Acrobat Reader on-line Help.

FIND—use CTRL-F or the find tool to quickly locate text.

ZOOM—use the zoom tool to magnify an area for better clarity.

FIT IN WINDOW—use the fit in window tool to redisplay the entire page.
Title Block

Lower right corner of the drawing will contain a title block. Depending on what sheet and/or frame of the drawing you are viewing, the title block will be in a different format. The important elements of the title block are noted below.

- **FIRST USED**—Unit the drawing was first used on
- **TITLE**—Description of the drawing
- **PART NO/DWG NO**—Winnebago Industries part number
- **SHEET/FRAME**—Sheet number of the drawing (1 of 6 or S1) Frame number of the drawing (F1)
Drawing Border

To navigate a drawing, it is broken down into zones or areas. The drawing border contains the zone locations—**alpha locations on the side borders** and **numeric locations on the top & bottom borders**. You locate an object in a drawing similarly to locating a city on a road map. By using the zone locaters in the drawing border, you can locate objects on a drawing.

For example:
To locate the housing at zone D-1, first locate zone D in the **right or left side drawing border**, then locate zone 1 in the **top or bottom drawing border**. The area on the drawing where those two meet is referenced as zone D-1.

In this example, the housing at zone D-1 specifies that it connects to a housing on sheet 5 zone C-8.

CONNECTS TO
WIRE ASM-OVHD
(SHT 5, C-8)
(LOCATED IN FRONT SLIDEOUT OVERHEAD)

The housing at zone C-8 on sheet 5 specifies that it connects to a housing on sheet 5 zone D-1.

CONNECTS TO
WIRE ASM-SIDEWALL
(SHT 5, D-1)
(LOCATED IN FRONT SLIDEOUT OVERHEAD)
Multi-Frame Drawings

A multi-frame drawing is a long drawing that is split into sections or frames. Frame counting begins on the right and goes left.

A drawing that does not contain frames is surrounded on all four sides by a border. A multi-frame drawing will not have a border on the right and/or left sides.

The following example shows sheet 2 of part number 141032 that is split into 3 frames. Frame 1 has a drawing border only on the right edge but not the left edge; Frame 2 does not have a border on either the left or right edge; and Frame 3 has a border only on the left edge.
Delta Notes and Option Codes

Delta notes specify important information and are located in the lower left corner of the drawing. (Note on a multi-frame drawing, the delta notes are located on the last frame.) The delta note is referenced in the drawing by the delta symbol \triangle and the note number.

Option codes are located at zone A-1 and list the optional feature code and a description of the optional feature. Option codes are noted in the drawing with an oval.

Option codes located directly above the title block signify that the entire drawing pertains to that option.

Option codes located on the drawing signify that that note or view pertain to the option.
Detail Views

A detail view is an enlarged area of part of the drawing. Detail views are defined one of two ways. First by dashed lines and arrows around the area to be enlarged. A detail identifier is noted between the arrows. Secondly, just a callout specifying the detail. Locate the detail view on the drawing. Note that the detail view may be located on another sheet of the drawing.

141035 Sheet 2
Detail BB—Note that the detail view is on the same page as the callout.

141034 Sheet 3
141034 Sheet 4
Detail DG—Note that this detail is not on the same sheet as the callout.
Winnebago Industries built motorhomes have been using “two-color” wiring on 12-volt wiring since the early 1990s. The wiring is identified first by color, and then with a combination of numeric and alpha characters stamped or printed directly on the wire. Beginning in 1999, the revision level of the assembly is also stamped on the wire. This wiring identification is printed on each wire every inch making it convenient to find in close quarters.

This photo shows a yellow and a white wire. Note the eight-digit part number (146740-01) the revision level (A) and the three-character alpha designation (JJT) on the yellow wire.

The eight-digit part number and the revision level specify the wiring assembly to which the JJT wire belongs and the alpha characters are used to identify the purpose or function of the wire.

The Winnebago Wiring Identification Guide must be referenced to determine the purpose or function of the JJT wire. Locate the JJT code in the Wiring Identification Guide (use the Find function of Acrobat Reader to easily locate JJT).

This describes a 14 gauge yellow wire that connects to a 15 amp power source from the coach battery (versus the chassis battery).

<table>
<thead>
<tr>
<th>CODE/COLOR</th>
<th>FROM:</th>
<th>TO:</th>
</tr>
</thead>
<tbody>
<tr>
<td>JJR 16 YEL</td>
<td>REMOTE SWITCH (EXTEND)</td>
<td>PATIO AWNING CONTROL MODULE (RELAY POSITION 87A, EXTEND)</td>
</tr>
<tr>
<td>JJS 12 YEL</td>
<td>REMOTE SWITCH</td>
<td>DOOR AWNING CONTROL RELAY (RELAY POSITION 87A, EXTEND)</td>
</tr>
<tr>
<td>JJT 14 YEL</td>
<td>OVERCURRENT PROTECTION (15A FUSE/BREAKER TYPICAL)</td>
<td>COACH 12V RECEPTACLES (REF JJJU)</td>
</tr>
<tr>
<td>JJU 14 WHT</td>
<td>COACH 12V RECEPTACLES (REF JJT)</td>
<td>GROUND</td>
</tr>
</tbody>
</table>
Wire Tracing on Diagram Drawings

Wire tracing is required when an electrical component is inoperative. We have chosen a familiar item, the Kwikkee ® electric step, for our example and will describe step-by-step how to identify and trace one electrical circuit.

1. Since the diagram does not contain a table of contents, it is necessary to scan the drawing to identify a portion of the affected circuit. The 4-pin connector that mates to the electric step plug is located at A-11 (Sheet 1 – Frame 2).

2. Note the information available next to the connector. Each pin in the connector is identified by it’s location and by the wire attached. There are occasions where it will be necessary to identify the function of each wire to properly diagnose a problem. This will require use of the Wiring Identification Guide. Delta note 4 makes reference to the manufacturer’s diagram for additional information.

3. For this example, we have identified wire “KA” that should have power but does not. Starting at the connector at A-11, follow the yellow 12-gauge “KA” wire up and to the right side of the sheet.

4. The KA wire transitions to Sheet 1 Frame 1 and turns up to a 15-pin mate-lock connector. Note the wiring identification information to the right of the connector and you will see the “KA” wire is in pin position number 15.

5. The text above this connector identifies the location for the other half of the mate-lock connector on the drawing in addition to the connector’s physical location in the motorhome. The (SHT 1, C-4) information tells you to go to sheet 1, zone C-4. Since you are already on sheet 1, you will find the other half of the 15-pin connector at zone C-4.

6. From the 15-pin connector at C-4, find the “KA” wire and follow it to the 25 amp breaker in the breaker buss. Note the location information to the right of the buss.

7. Follow the wire path from the 25 amp breaker to the 8 gauge black wire that eventually connects to the isolated stud located in the battery compartment.
Installation drawings offer additional information that can expedite a repair effort. As noted in the wiring diagram tracing section, a wiring diagram verbally describes a connector’s location in the motorhome. Installation drawings not only illustrate the connectors location, they depict the wiring path getting from point A to point B. Our motorhomes range from 20 to 40 feet in length and having knowledge of a wire harness’s routing throughout the vehicle can narrow the search.

1. Since there are a variety of installation drawings to choose from, it is important to estimate where we would most likely find a specific wire harness and then start the initial search in that drawing. For example, there is an installation drawing for all of the dash related components – see the Front End Wiring Installation drawing; there are installation drawings for harnesses found below the coach floor – see the Chassis Wiring Installation drawing; as well as installation drawings for inside the coach.

2. Since there is not a table of contents, it is necessary to scan the drawings for any details that would help identify the component, wiring connector, or the wire harness you’re looking for. This would include illustrations of items like a power converter or text calling out a harness location inside the motorhome.

An example of a harness routing is illustrated here. The highlighting illustrates the wiring harness location in the rear bed/wardrobe room extension.

In this example, the harness includes the light in the wardrobe, the lighting in the overhead cabinets above the bed, switches on the wall, and the alarm clock/radio installation located in the wardrobe/bedroom divider wall.

The wire harness passes from the overhead to the floor inside this wall and terminates at an 8-pin connector located under the bed. This harness connects to a harness found in the Wire Asm-Coach drawing.
The installation drawings contain balloon callouts identifying electrical components. You must refer to the Electrical Parts Identification List to cross-reference this callout identification with the Winnebago Industries part numbers.

In this example: the balloon callout LMU3-2 cross-references to:

- LAMP 138116-01-CHT
- SCREW (SUPPLIED)
- BULB 123918-01-000 (quantity 3)
- CONNECTOR 058028-01-000 (quantity 2)